

Edexcel Chemistry A-level

Practical 7 and 15

Analysis of unknown inorganic and organic compounds.

S www.pmt.education

▶ Image: Contraction PMTEducation

Inorganic

Test for acid or base character

- Use an indicator paper.
- red = acid
- blue = base

Flame tests for Group I and Group II metal cations

- Dip a nichrome metal wire in the solution of HCI and then into the tested metal ion solution.
- Carefully place the wire at the top of the flame coming from Bunsen burner.
 - \circ Li⁺ = red
 - Na⁺ = orange/yellow
 - \circ K⁺ = lilac
 - \circ Rb⁺ = red
 - \circ Cs⁺ = blue
 - \circ Mg²⁺ = no colour
 - \circ Ca²⁺ = brick-red
 - \circ Sr²⁺ = crimson red
 - Ba²⁺ = green

CO₃²⁻ and HCO₃⁻ ions

- Add aqueous acid.
- Bubbles of CO₂ gas will be observed.
- Use a delivery tube to pass the CO₂ through limewater.
- The solution will turn cloudy due to formation of CaCO₃ precipitate.

NH₄⁺ ions

- Add aqueous NaOH and gently warm the mixture.
- The ammonia gas will turn moist pH indicator paper blue.
- Pungent smell given off.

SO42- ions

- Add acidified barium chloride solution.
- White ppt forms (BaSO₄).

Mixtures of anions

When carrying out the above test, it may be useful to add some HNO_3 before you add $Ba^{2+}_{(aq)}$. The carbonate anion also gives a white precipitate with barium cations, and addition of acid will remove any carbonates present in the mixture. Then, the test for sulfates can be conducted.

www.pmt.education

Halides

- Add acidified aqueous AgNO₃ solution followed by aqueous ammonia solution.
- Cl⁻ forms a white ppt with silver nitrate which is soluble in dilute NH₃.
- Br⁻ forms a cream ppt with silver nitrate which is soluble in concentrated NH₃.
- I⁻ forms yellow ppt with silver nitrate which is insoluble in NH₃.

Testing for various metal cations using sodium hydroxide. Group I hydroxides are all soluble.

Metal cation	add some NaOH	add more NaOH
Mg ²⁺	White suspension	n/a
Ca ²⁺	White suspension, but more soluble than Mg(OH) ₂	n/a
Sr ²⁺ , Ba ²⁺	Soluble hydroxides.	n/a
Zn ²⁺	White ppt, Zn(OH) ₂ . Soluble in NH ₃ , colourless solution, Zn(NH ₃) ₄ ²⁺	Ppt dissolves, colourless solution, Zn(OH) ₄ ²⁻
Al ³⁺	White ppt, Al(OH) ₃	Ppt dissolves, colourless solution, Al(OH)₄⁻
Ag⁺	Dark brown ppt, Ag ₂ O. Soluble in NH_3 , colourless solution, Ag(NH_3) ₂ ⁺	Ppt doesn't dissolve
Cu ²⁺	Blue ppt, $Cu(H_2O)_4(OH)_2$, soluble in excess NH_3 to form a deep blue solution, $Cu(NH_3)_4^{2+}$	Ppt doesn't dissolve
Fe ³⁺	Brown ppt, Fe(OH) ₃	Ppt doesn't dissolve
Fe ²⁺	White/green ppt, slowly turning brown when exposed to air (oxidation to Fe(OH) ₃)	Ppt doesn't dissolve
Cr ³⁺ (green or blue)	Blue-green ppt, $Cr(H_2O)_3(OH)_3$, soluble in NH_3 , $Cr(NH_3)_6^{3+}$, violet solution	Ppt dissolves, Cr(OH) ₆ ³⁻ green solution.
Co ²⁺	Blueish ppt, $Co(H_2O)_4(OH)_2$. Slowly turns pink. The precipitate dissolves in NH_3 , $Co(NH_3)_6^{2^+}$, light brown colour. Turns to dark brown upon standing - slow oxidation to Co(III).	Ppt doesn't dissolve
Ni ²⁺	Green ppt, Ni(H ₂ O) ₄ (OH) ₂ . Soluble in NH ₃ - blue solution, Ni(NH ₃) ₆ ²⁺	Ppt doesn't dissolve
Mn ²⁺ (pale pink)	Off-white ppt, Mn(OH) ₂ turns brown upon exposure to air (oxidation to MnO ₂)	Ppt doesn't dissolve

Halides can also be tested for by reacting a solid halide salt with conc. H_2SO_4 .

www.pmt.education

DOG PMTEducation

• Chloride produces steamy fumes of HCI.

- Bromide produces steamy fumes, brown vapour (HBr, Br₂, SO₂).
- lodide produces steamy fumes, purple vapours, black solid (I₂, HI, SO₂ or even solid S).

Transition metal colours

- MnO_4^- = violet
- CrO_4^{2-} = yellow (could be converted to orange $Cr_2O_7^{2-}$ in acid and vice versa).

Test for bromide

- Add chlorine water to a solution of bromides
- Produces an orange solution if present.
- Some effervescence may be observed.

Organic

Haloalkanes

[see CP4, hydrolysis followed by halide test.]

Alkenes

- Add some bromine water to your compound and shake.
- If there are any C=C bonds, the colour change occurs from orange to colourless.

-OH Groups (but not PHENOLS)

- add PCl₅.
- Misty fumes of HCI produced.
- Add a small piece of sodium.
- Effervescence.

Carboxylic acids

- litmus paper turns red-ish.
- Add a carbonate/HCO₃⁻
- Effervescence (CO₂)

Aldehydes and Ketones

- Add 2,4-DNP (Brady's reagent).
- An orange precipitate is formed upon reaction with C=O group of aldehyde or ketone.

- Add Tollen's Solution (ammoniacal AgNO₃).
- Aldehydes give a positive test and a silver mirror is observed.
- Ketones cannot be oxidised, so no change observed)
- Fehling's test.

- Aldehydes give a positive test and form a brick red precipitate.
- Ketones don't react so the solution stays deep blue).

lodoform reaction

- Warm with iodine and sodium hydroxide.
- Yellow precipitate.
- Antiseptic smell (triiodomethane, iodoform).
- Positive test with methylketones (e.g. propanone), ethanal, ethanol, and methyl secondary alcohols (e.g. propan-2-ol).

Alcohol (primary, secondary) and Aldehyde

- Warm with acidified (H_2SO_4) and $K_2Cr_2O_7$.
- Colour change from orange to green.

Esterification test

- Gently warm an alcohol and carboxylic acid in presence of conc. H₂SO₄
- Should produce a compound with a characteristic smell, (e.g. pineapples).

Solubility test:

- Compounds with groups that can form H-bonds may be soluble in water, (e.g. amines, alcohols, carboxylic acids etc.)
- Some carboxylic acids may not be soluble in water, but may be soluble in alkaline solution (due to formation of RCOO⁻).
- Same goes with amines. Some may not be soluble in water, but will be soluble in acidic solution (e.g. formation of RNH₃⁺).

DOfS PMTEducation